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1. Introduction

In the last decade a growing literature has demonstrated that both adults and preschool children
can act in ways that are consistent with the predictions of Bayesian models in appropriate contexts
(e.g., Griffiths & Tenenbaum, 2005, 2009; Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Gopnik
& Schulz, 2004; Gopnik et al., 2004). Bayesian models provide a framework for more precisely charac-
terizing intuitive theories, and they indicate how a rational learner should update her beliefs as she
encounters new evidence. The Bayesian approach has been used to explain the inferences adults make
about causal relationships, words, and object properties (for a review see Tenenbaum, Griffiths, &
Kemp, 2006; for critiques of this approach and responses, Jones & Love, 2011; Chater et al., 2011;
Bowers & Davis, 2012; Griffiths, Chater, Norris, & Pouget, 2012; McClelland et al., 2010; Griffiths
et al., 2010). The approach can also explain the inferences that children make in these domains (for
reviews see Gopnik, 2012; Gopnik & Wellman, 2012; Xu and Kushnir, 2012). Taken together, these
findings suggest that Bayesian inference may provide a productive starting point for understanding
human learning in these domains.

Bayesian models have typically been used to give a ‘‘computational level’’ analysis of the inferences
people make when they solve inductive problems (Marr, 1982). That is, they focus on the form of the
computational problem and its ideal solution. Bayesian models are concerned with the computational
problem of how a learner should update her beliefs given new evidence. The ideal Bayesian solution
selects the most likely hypothesis after taking the evidence into account. However, it is extremely
unlikely that people are performing exact Bayesian inference at the algorithmic level as such inferences
can be extremely computationally challenging (e.g., Russell & Norvig, 2003). In particular, it would be
computationally costly to always enumerate and search through all the hypotheses that might be
compatible with a particular pattern of evidence. Indeed, it has been generally acknowledged since
the pioneering work of Simon (1955, 1957) that human cognition is at best ‘‘boundedly rational’’.

We might expect that rather than explicitly performing Bayesian inference, adults and children use
‘‘fast and frugal’’ heuristics (Gigerenzer & Gaissmaier, 2011; Gigerenzer & Goldstein, 1996) that
approximate Bayesian inference. Such heuristic procedures might lead to apparently irrational
inferences when considered step by step, even though in the long run those inferences would lead
to a rational solution. An algorithmic account of learning could help explain both how people might
produce inferences that can approximate rational models and why their step-by-step learning
behavior might appear irrational or protracted.

Thus, algorithmic accounts should approximate Bayesian inference, but they also need to be
computationally efficient. The need for efficiency is particularly important when we consider chil-
dren’s learning. Young children have particularly limited cognitive resources, at least in some respects
(e.g., German & Nichols, 2003; Gerstadt, Hong, & Diamond, 1994; Siegler, 1975), but are nonetheless
capable of behaving in a way that is consistent with optimal Bayesian models (Gopnik & Tenenbaum,
2007). Children must thus be especially adept at managing limited resources to approximate Bayesian
inference. At the same time, many of the most interesting cases of belief revision happen in the first
few years of life (Bullock, Gelman, & Baillargeon, 1982; Carey, 1985; Gopnik & Meltzoff, 1997;
Wellman, 1990). Understanding more precisely how existing beliefs and new evidence shape
children’s learning given limited cognitive resources is a key challenge to proponents of Bayesian
models of children’s cognition.

Here we investigate the algorithms that learners might be using to solve a particular kind of induc-
tive problem – causal learning. Children learn a great deal about causal structure from very early in
development (e.g. Gopnik & Meltzoff, 1997; Gopnik & Schulz, 2007; Wellman & Gelman, 1992) and
causal knowledge and learning have been a particular focus of formal work in machine learning
and philosophy of science (Pearl, 2000; Spirtes, Glymour, & Scheines, 2000). Causal learning has also
been one of the areas in which Bayesian models have been particularly effective in characterizing
human behavior, from adults learning from contingency data (Griffiths & Tenenbaum, 2005) to
children reasoning about causal systems and events (Bonawitz, Gopnik, Denison, & Griffiths, 2012;
Bonawitz et al., 2011; Griffiths, Sobel, Tenenbaum, & Gopnik, 2011; Gweon, Schulz, & Tenenbaum,
2010; Kushnir & Gopnik, 2007; Schulz, Bonawitz, & Griffiths, 2007; Seiver, Gopnik, & Goodman, 2012).
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Most studies of causal learning by children and adults simply relate the total amount of
evidence that a learner sees to the final inferences they make. This technique is well-suited to
analyzing the correspondence between the learner’s behavior and the predictions of computa-
tional-level models. However, a more effective way to determine the actual algorithms that a lear-
ner uses to solve these problems is to examine how her behavior changes, trial-by-trial, as new
evidence is accumulated. We describe a new ‘‘mini-microgenetic’’ method (cf. Siegler, 1996) that
allows us to analyze the changes in a learner’s knowledge as she gradually accumulates new
pieces of evidence. We can then compare this behavior to possible algorithmic approximations
of Bayesian inference.

Computer scientists and statisticians also face the challenge of finding efficient methods for
performing Bayesian inference. One common strategy for performing Bayesian inference is to use
approximations based on sampling, known as Monte Carlo methods. Under this strategy, computa-
tions involving a probability distribution are conducted using samples from that distribution – an
approach that can be much more efficient. We introduce a new sequential sampling algorithm inspired
by the Win-Stay, Lose-Shift (WSLS) strategy,1 in which learners maintain a particular hypothesis until
they receive evidence that is inconsistent with that hypothesis. We name our strategy Win-Stay, Lose-
Sample to distinguish it from the original strategy. We show that our WSLS algorithm approximates
Bayesian inference, and can do so more efficiently than enumerating hypotheses or performing simple
Monte Carlo search. Previous work in cognitive psychology demonstrates that people use a simple form
of the Win-Stay, Lose-Shift strategy in concept learning tasks (Levine, 1975; Restle, 1962).

In previous experiments that compared human performance to the predictions of Bayesian models,
researchers have typically looked at responses at just one point – after the evidence has been accumu-
lated. In these tasks, the distribution of these responses often matches the posterior distribution that
would be generated by Bayesian inference. That is, the proportion of people who endorse a particular
hypothesis is closely related to the posterior probability of that hypothesis (e.g., Denison, Bonawitz,
Gopnik, & Griffiths, 2013; Goodman et al., 2008; Vul, Goodman, Griffiths, & Tenenbaum, 2009; Xu &
Tenenbaum, 2007; though, see also Bowers & Davis, 2012; Jones & Love, 2011; Marcus & Davis,
2013). However, the psychological signature of WSLS algorithms is a characteristic pattern of depen-
dency between people’s successive responses as the evidence comes in. In general terms, a learner
who uses a WSLS algorithm will be ‘‘sticky’’; that is, they will show a tendency to prefer the hypothesis
currently held to other possible hypotheses. What we demonstrate mathematically is that, despite an
individual’s tendency toward ‘‘stickiness’’, the overall proportion of individuals selecting a hypothesis
at a given point in time will match the probability of that hypothesis given by Bayesian inference at
that point in time.

To test whether the signature pattern of dependence produced by our WSLS algorithm is present
in people’s judgments, we systematically compare this algorithm to an algorithm that uses indepen-
dent sampling. In the independent sampling algorithm, the learner simply resamples a hypothesis
from the new distribution yielded by Bayesian inference each time additional evidence is acquired.
Independent sampling is similar to our WSLS algorithm in that it would also approximate the
predictions of a Bayesian model. However, by definition, it would not have the characteristic depen-
dence between responses, as would WSLS. This contrast to independent sampling allows us to test
systematically whether learner’s responses are indeed dependent in the way that our WSLS algo-
rithm would predict.

The plan for the rest of the paper is as follows. Next, we introduce the causal learning tasks that will
be the focus of our analysis and summarize how Bayesian inference can be applied in this task. We
then introduce the idea of sequential sampling algorithms, including our new WSLS algorithm. This
is followed by a mathematical analysis of the WSLS algorithm, showing that it approximates Bayesian
inference in deterministic and non-deterministic cases. The remainder of the paper focuses on exper-
iments in which we evaluate how well both Bayesian inference, in general, and the WSLS algorithm, in
particular, capture judgments by children and adults in two causal learning tasks in which the learner
gradually acquires new evidence.
1 Also known as Win-Stay, Lose-Switch strategy (Robbins, 1952).
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2. Analyzing sequential inductive inferences

While the algorithms that we present in this paper apply to any inductive problem with a discrete
hypothesis space, we will make our analysis concrete by focusing on two simple causal learning
problems, which are representative of the larger causal learning problems that children and adults
face. In the experiments that appear later in the paper we provide actual data from adults and children
solving these problems, but we will begin by presenting a Bayesian computational analysis of how
these problems might be solved ideally. The first of these two problems involves deterministic events,
and the second involves non-deterministic events, where object behavior is stochastic. The distinctive
feature of these learning problems is that participants are asked to provide predictions over multiple
trials, as new evidence is observed. This allows us to model potential dependencies between an indi-
vidual learner’s responses as her beliefs are updated following each successive piece of new evidence.
2.1. Deterministic events

Deterministic events provide a simple starting point for considering how a learner might update
his or her beliefs. In the deterministic case the evidence a learner observes will necessarily rule out
certain hypotheses. As more and more evidence accumulates fewer hypotheses will remain.

For example, consider the following causal learning problem: there are two categories of objects
(yellow and red blocks). Some of these blocks light up when they come into contact with other blocks.
Blocks of the same color all behave similarly, and will either light or not light when they interact with
other blocks. Given these constraints, we can generate a hypothesis space of 16 possible causal
structures, as illustrated in Fig. 1(a).

Using this hypothesis space, we can consider how an ideal learner should update his or her beliefs
in light of evidence. Assume that the learner begins with a prior distribution over hypotheses, P(h),
reflecting her degree of belief that each hypothesis is true before seeing any data. Given some
Fig. 1. A causal induction problem. (a) The sixteen possible hypotheses illustrated with the red (dark) and yellow (light) blocks;
arrows indicate the causal direction of lighting. (b) The children’s prior distribution over the sixteen hypotheses. (c) The adult’s
prior distribution over the sixteen hypotheses. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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observed data, d, on how the blocks interact, the learner obtains a posterior distribution over
hypotheses, P(h|d), via Bayes’ rule:
PðhjdÞ ¼ PðdjhÞPðhÞP
h02HPðdjh0ÞPðh0Þ

ð1Þ
where P(d|h) is the likelihood, indicating the probability of observing d if h were true, and H is the
hypothesis space.

In our causal induction problem, we estimate a prior distribution over the 16 hypotheses from the
initial guesses that learners make about the causal structure (see Results of Experiment 1 for details).
This distribution is shown in Fig. 1(b). The data that learners observe consists of a single interaction
between a red and a yellow block. No observations are made about red–red or yellow–yellow
interactions, and so a number of hypotheses remain consistent with this evidence. We assume a
deterministic likelihood, such that if a causal relationship exists it always manifests, with each block
from the relevant class lighting up each block from the other class. Consequently, we have
PðdjhÞ ¼
1 h consistant with d

0 otherwise

�
ð2Þ
where the likelihood is simply 1 or 0, depending on whether or not the data d could be generated by h.
Often, Bayesian inference must be performed sequentially. The learner makes a series of observa-

tions, one after another, and the posterior distribution is updated after each observation. In our causal
learning problem, learners could receive a sequence of observations of blocks interacting, rather than a
single observation. Letting d1, . . .,dn denote observations after n trials, we are interested in the
posterior distribution P(h|d1, . . .,dn). This can be computed via Equation (1), substituting d1, . . .,dn for
d. However, it can be simpler to follow a sequential updating rule, which allows us to compute the
posterior after observing d1, . . .,dn+1 from the posterior based on d1, . . .,dn. Formally, we assume that
the observations di are conditionally independent given h (i.e., that the probability that blocks interact
in a particular way on a given trial is independent of their interaction on all other trials, once the nat-
ure of the underlying causal relationship is known). In this case, we can perform Bayesian inference
sequentially using the update rule
Pðhjd1; . . . ;dnþ1Þ ¼
Pðdnþ1jhÞPðhjd1; . . . ;dnÞP

h02HPðdnþ1jh0ÞPðh0jd1; . . . ;dnÞ
ð3Þ
where the posterior after the first n observations plays the role of the prior for observation n + 1.
With deterministic events, sequentially performing Bayesian inference reduces to narrowing down

the hypothesis space, with the posterior distribution being the prior renormalized over the remaining
hypotheses. That is, with each observation, the learner eliminates some hypotheses and reconsiders
the remaining hypotheses. This can be seen by substituting the likelihood from Eq. (2) into the update
rule given in Eq. (3). On observing the first piece of data, d1, the likelihood will give hypotheses
inconsistent with the data a posterior probability of zero. The hypotheses consistent with the data will
remain, with probability proportional to their prior probability, and the sum in the denominator
ranges over just those hypotheses. The same process takes place with each subsequent piece of data,
with the posterior at each point being the prior renormalized over the hypotheses consistent with the
data observed up to that point.

2.2. Stochastic events

Determinism is a reasonable assumption in some causal learning contexts (Griffiths & Tenenbaum,
2009; Schulz, Hooppell, & Jenkins, 2008; Schulz & Sommerville, 2006), but learners also need to be
able to deal with stochastic data. The stochasticity may be due to noisy observations – a result of noise
in the demonstration or noise in the child’s observation – or it could reflect the presence of a
non-deterministic causal mechanism.

We designed a stochastic causal learning task to explore the inferences that adults and children
make for non-deterministic systems. In this task, there are three categories of objects: red, green,
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and blue blocks. Each of these kinds of blocks activates a machine with different probability when they
are placed on the machine. The red blocks activate the machine on five out of six trials, the green
blocks on three out of six trials, and the blue blocks on just one out of six trials. A new block is then
presented that has lost its color and needs to be classified as either a red, green, or blue block. The
learner observes what happens when the block is placed on the machine over a series of trials. What
should learners infer about the category and causal properties of this block as they gradually acquire
more evidence about its effects?

As with the deterministic case, given this hypothesis space, we can compute an ideal learner’s
posterior distribution over hypotheses via Bayes’ rule (Eq. (1)). In this case, the likelihood takes on
a wider range of values. If we take our data d to be the activation of the machine, the probability of
this event depends on our hypothesis about the color of the block. For the red block, we might take
P(d|h) to be 5/6; for the green block, 3/6; and for the blue block, 1/6. Importantly, observing the block
light up or not light up the detector no longer clearly rules out any of these hypotheses. Bayesian infer-
ence thus becomes a matter of balancing the evidence provided by the data with our prior beliefs. We
can still use the sequential updating rule given in Eq. (3), but now each new piece of data is only going
to steer us a little more toward one hypothesis or another.

2.3. Toward algorithms for Bayesian inference

This analysis of sequential causal learning in deterministic and nondeterministic scenarios allows
us to think about how learners should select hypotheses by combining prior beliefs with evidence.
However, assuming that learners’ responses do reflect this optimal trade-off between priors and
evidence, this analysis makes no commitments about the algorithms that might be used to approxi-
mate Bayesian inference. In particular, it makes no commitments about how an individual learner will
respond to data, contingent on her previous guess, other than requiring that both responses be
consistent with the associated posterior distributions. Given a potentially large hypothesis space,
searching through that space of hypotheses in a way that yields something approximating Bayesian
inference is a challenge. In the remainder of the paper, we investigate how a learner might address
this challenge.
3. Sequential sampling algorithms

The Bayesian analysis presented in the previous section provides an abstract, ‘‘computational level’’
characterization of causal induction for these two causal learning tasks, identifying the underlying
problem and how it might best be solved (Marr, 1982). We now turn to the problem of how to approx-
imate this optimal solution.

One way a learner might compute an optimal solution is by simply following the recipe provided
by Bayes’ rule. However, enumerating all hypotheses and then updating their probabilities by
multiplying prior and likelihood, quickly becomes computationally expensive. We thus consider the
possibility that people may be approximating Bayesian inference by following a procedure that
produces samples from the posterior distribution.

3.1. Approximating Bayesian inference by sampling

Sophisticated Monte Carlo methods for approximating Bayesian inference developed in computer
science and statistics make it possible to draw a sample from the posterior without having to calculate
the full distribution (see, e.g., Robert & Casella, 2004). Thus, rather than having to evaluate every single
hypothesis and work through Bayes’ rule, these methods make it possible to consider only a few
hypotheses that have been sampled with the appropriate probabilities. These few hypotheses can
be evaluated using Bayes rule to generate samples from the posterior distribution. Aggregating over
these samples provides an approximation to the posterior distribution. That is, for approximate
algorithms, as the number of samples they generate increase, the distribution of samples converges
to the normative distribution. These sampling algorithms are consistent with behavioral evidence that
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both adults and children select hypotheses in proportion to their posterior probability (Denison et al.,
2013; Goodman et al., 2008).

Note that these sampling algorithms also address a conflict between rational models of cognition
and the finding that people show significant individual variability in responding (e.g. Siegler & Chen,
1998). A system that uses this sort of sampling will be variable – it will entertain different hypotheses
apparently at random from one time to the next. However, this variability will be systematically
related to the probability distribution of the hypotheses, as more probable hypotheses will be sampled
more frequently than less probable ones. And, on aggregate, the distribution of hypotheses from many
learners (or one learner across multiple trials), will approximate the probability distribution. Recent
research has explored this ‘‘Sampling Hypothesis’’ generally and suggested that the variability in
young children’s responses may be part of a rational strategy for inductive inference (Bonawitz,
Denison, Griffiths, & Gopnik, 2014; Denison et al., 2013).

The idea that people might be generating hypotheses by sampling from the posterior distribution
still leaves open the question of what kind of sampling scheme they might be using to update their
beliefs. Independent Sampling (IS) is the simplest strategy, and is thus a parsimonious place to start
considering the algorithms learners might use. In Independent Sampling, a learner would generate
a sample from the posterior distribution independently each time one was needed. This can be done
using a variety of Monte Carlo schemes such as importance sampling (see Neal, 1993, for details) and
Markov chain Monte Carlo (see Gilks, Richardson, & Spiegelhalter, 1996, for details). Such schemes
have previously been proposed as possible accounts of human cognition, (Shi, Feldman, & Griffiths,
2008; Ullman, Goodman, & Tenenbaum, 2010). However, this approach can be inefficient in situations
where the posterior distribution needs to be approximated repeatedly as more data become available.
Independent Sampling requires that the system recompute the approximation to the posterior after
each piece of data is observed.

People might adopt an alternative strategy that exploits the sequential structure of the problem of
updating beliefs. The problem of sequentially updating a posterior distribution in light of evidence can
be solved approximately using sequential Monte Carlo methods such as particle filters (Doucet, de
Freitas, & Gordon, 2001). A particle filter approximates the probability distribution over hypotheses
at each point in time with a set of samples (or ‘‘particles’’), and provides a scheme for updating this
set to reflect the information provided by new evidence. The behavior of the algorithm depends on
the number of particles. With a very large number of particles, each particle is similar to a sample from
the posterior. With a small number of particles, there can be strong sequential dependencies in the
representation of the posterior distribution. Recent work has explored particle filters as a way to
explain patterns of sequential dependency that arise in human inductive inference (Levy, Reali, &
Griffiths, 2009; Sanborn, Griffiths, & Navarro, 2010).

Particle filters have many degrees of freedom, and many different schemes for updating particles
are possible (Doucet et al., 2001). They also require learners to maintain multiple hypotheses at each
point in time. Here, we investigate a simpler algorithm that assumes that learners maintain a single
hypothesis, only occasionally resampling from the posterior and shifting to a new hypothesis. The
decision to resample and so shift to a new hypothesis is probabilistic. The learner resamples with a
probability dependent on the degree to which the hypothesis is contradicted by data. As the probabil-
ity of the sampled hypothesis given the data goes down, the learner is more likely to resample. This is
similar to using a particle filter with just a single particle. The computationally expensive resampling
step is more likely to be carried out as that particle becomes inconsistent with the data. This algorithm
tends to maintain a hypothesis that makes a successful prediction and only tries a new hypothesis
when the data weigh against the original choice. Thus, this algorithm may have some advantages over
other forms of Monte Carlo search that resample after every observation. The central idea of
maintaining a hypothesis provided it successfully accounts for the observed data leads us to refer
to this strategy as the Win-Stay, Lose-Sample (WSLS) algorithm.

3.2. History of the WSLS principle

The WSLS principle has a long history in computer science and statistics, where it appears as a
heuristic algorithm in reinforcement learning (Robbins, 1952). Robbins (1952) defined a heuristic
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method for maximizing reward in a two-armed bandit problem based on this principle, in which an
agent continues to perform an action provided that action is rewarded. These early studies employed
very specific types of WSLS procedures, but in fact, the principle falls under a more general class of
algorithms that depend on decisions from experience (see Erev, Ert, Roth, et al., 2010, for a review).

The principle also has a long history in psychology. The basic principle of repeating behaviors that
have positive consequences and not performing behaviors that have negative consequences can be
traced back to Thorndike (1911). Restle (1962) did not explicitly call his model a WSLS algorithm,
but he proposed a simple model of human concept learning that employed a similar principle, in
which people were assumed to hold a single hypothesis in mind about the nature of a concept, only
rejecting that hypothesis (and drawing a new one at random) when they received inconsistent evi-
dence. This model, however, assumed that people could not remember the hypotheses they had tried
previously or the pattern of data that they had observed. In fact people do use this information in
concept learning, and Restle’s version of the WSLS algorithm was subsequently shown to be a poor
characterization of human concept learning (Erikson, 1968; Trabasso & Bower, 1966).

A form of the WSLS strategy has also been shown to be used by children, most notably in proba-
bility learning experiments using variable reinforcement schedules (Schusterman, 1963; Weir,
1964). Schusterman (1963) asked children to complete a two-alternative choice task in which they
could obtain prizes by searching in one of two locations across many trials. Each location contained
the prize on 50% of the trials, but in one condition, the probability that a reward would appear on a
given side was 64% if the reward had occurred on that side in the previous trial, while in another con-
dition, this probability was 39%. The three-year-olds very strongly followed a WSLS strategy, even in
the condition where this strategy would not maximize the reward (i.e., the 39% condition). The five-
year-olds showed a more sophisticated pattern, using a WSLS strategy more often in the 64% than in
the 39% condition.

Weir (1964) also used a probability learning task to examine the development of hypothesis testing
strategies throughout childhood. Over many trials, a child had to choose to turn one of three knobs on
a panel to obtain a marble. Only one knob produced marbles and it did so probabilistically (e.g., on 66%
of the trials). Results were analyzed in terms of a variety of strategies, including WSLS. In this task, the
most common pattern followed by three- to five-year-old children was a win-stay, lose-stay strategy,
(i.e., persevering with the initial hypothesis) which maximizes reward in this task. The 7- to 15-year-
old children were more likely than the other age groups to show a WSLS strategy, but children in this
age range also commonly used a win-shift, lose-shift (i.e., alternation) strategy.

A parallel form of WSLS has also been analyzed as a simple model of learning that leads to
interesting strategies in game theory, where it is often used to describe behavior in deterministic bin-
ary decision tasks (see Colman, Pulford, Omtzigt, & al-Nowaihi, 2010, for a more complete historical
overview). For example, Nowak and Sigmund (1993) showed that WSLS outperforms tit-for-tat
(TFT) strategies in extended evolutionary simulations of the Prisoner’s Dilemma game when the
simulations include these additional complexities. The use of WSLS, as opposed to TFT, results in much
quicker recovery following errors and exploitation of unconditional cooperators – behaviors that
correspond well with typical decisions of both humans and other animals.

3.3. Analyzing the WSLS algorithm

The WSLS principle provides an intuitive strategy for updating beliefs about hypotheses over time.
This raises the question of whether there are specific WSLS strategies that can actually approximate
the distribution over hypotheses that would be computed using full Bayesian inference. That is, are
there specific variants of WSLS that, like independent sampling, converge to the posterior distribution
as the number of samples increase? These kinds of WSLS strategies would have to be more sophisti-
cated than the simple strategies we have described so far.

In exploring the question of whether an algorithm based on the WSLS principle can approximate
Bayesian inference, we will also extend our analysis of WSLS to include cases where data are
probabilistic. Previous work discussing WSLS strategies would only allow for deterministic shifts from
one hypothesis to another. This involves a simple yes–no judgment about whether the data confirm or
refute a hypothesis. Bayesian inference, in contrast, is useful because it allows a learner to weight
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evidence probabilistically. Can an algorithm that uses the basic WSLS principle, but includes more
sophisticated kinds of probabilistic computation also be used to approximate Bayesian inference?

Our WSLS algorithm assumes that learners maintain their current hypothesis provided they see
data that are consistent with that hypothesis, and generate a new hypothesis otherwise. This is closest
to the version explored by Restle (1962), but diverges from it in that instead of randomly choosing a
hypothesis from an a priori equally weighted set of hypotheses (consistent with the data), a learner
samples a hypothesis from the posterior distribution. That is, the important difference between these
models is that in contrast to choosing a hypothesis at random from a stable, uniform distribution, in
our model a learner chooses the next hypothesis with probability proportional to its posterior
probability, which is continually being updated as new data are observed. The posterior distribution
in deterministic cases is simply the prior distribution renormalized by the remaining consistent
hypotheses.

It is relatively straightforward to show that this algorithm can approximate Bayesian inference in
cases where the likelihood function p(di|h) is deterministic, giving a probability of 1 or 0 to any
observation di for every h, and observations are independent conditioned on hypotheses. More pre-
cisely, the marginal probability of selecting a hypothesis hn given data, d1, . . .,dn, is the posterior prob-
ability P(h|d1, . . .,dn), provided that the initial hypothesis is sampled from the prior distribution P(h)
and hypotheses are sampled from the posterior distribution whenever the learner chooses to shift
hypotheses.2 That is to say, like other approximation algorithms such as Independent Sampling, if you
were to look at the distribution of responses of a group of learners who observed the same evidence
and who were each following this WSLS strategy, the distribution of answers would approximate the
posterior distribution predicted by Bayesian inference. This algorithm is thus a candidate for approximat-
ing Bayesian inference in settings similar to the deterministic causal induction problem that we explore
in this paper. The proof is given in Appendix A and provides the first of two specific WSLS algorithms that
we will investigate.

More interestingly, the WSLS algorithm can be extended to approximate Bayesian inference in
stochastic settings by assuming that the probability of shifting hypotheses is determined by the
probability of the observed data under the current hypothesis. A proof of the more general case, for
stochastic settings, is provided in Appendix B. The proof provides a simple set of conditions under
which the probability that a learner following the WSLS algorithm entertains a particular hypothesis
matches the posterior probability of that hypothesis. Essentially, when data are more consistent with
the current hypothesis we treat it as a ‘‘win’’; this means a learner is more likely to stay with her
hypothesis. When data are less consistent with the hypothesis, we treat it as a ‘‘loss’’; this means
the learner is more likely to sample from the updated posterior.

There are two interesting special cases of the class of WSLS algorithms identified by the conditions
laid out in our proof. The first special case is a simple algorithm that makes a choice to resample from
the posterior based on the likelihood associated with the current observation di for the current h,
p(di|h). With probability proportional to this likelihood, the learner maintains the current hypothesis;
otherwise, she samples a new hypothesis from the posterior distribution. The second special case is
the most efficient algorithm of this kind, in the sense that it minimizes the rate at which sampling
from the posterior is required. Resampling is minimized by considering the likelihood for the current
hypothesis relative to the likelihoods for all hypotheses when determining whether to resample – if
the current hypothesis assigns highest probability to the current observation, then the learner will
always maintain that hypothesis. The proof demonstrates that following one of these algorithms
results in the same overall aggregate result as learners always sampling a response from the updated
posterior, and thus approximates Bayesian inference. Our exploration of the WSLS algorithm in
stochastic settings will focus on the first of these cases, where the choice to resample is based just
on the likelihood for the current hypothesis, as this minimizes the burden on the learner.
2 It is worth noting that the WSLS algorithm still requires the learner to generate samples from the posterior distribution.
However, this algorithm is more efficient than Independent Sampling, since samples are only generated when the current
hypothesis is rejected. Other inference algorithms, such as Markov chain Monte Carlo, could be used at this point to sample from
the posterior distribution without having to enumerate all hypotheses – a possibility we return to later in the paper.
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Our WSLS algorithm differs in an important way from other variants of WSLS strategies when
used in a stochastic setting, in that it is possible that the learner ends up with the same hypothesis
again after ‘‘switching’’ (because that hypothesis is sampled from the posterior). This contrasts with
variants of the WSLS rule that require the learner to always shift to a new hypothesis (see Colman
et al., 2010). While such an algorithm would behave the same as our algorithm in a deterministic
setting if it was appropriately augmented to sample from the posterior on switching, it would
behave differently in a stochastic setting. It is an interesting open question whether this (potentially
more efficient) ‘‘must switch’’ algorithm can be generalized to approximate Bayesian inference in a
stochastic setting.

Both Independent Sampling and WSLS can approximate the posterior distribution, but there is an
important difference between them: WSLS introduces dependencies between responses and favors
sticking with the current hypothesis. We can characterize this difference formally as follows. In IS
there is no dependency between the hypotheses sampled after data points n and n + 1, hn and hn+1,
but there is for WSLS: if the data are consistent with hn, then the learner will retain hn with probability
proportional to p(d|hn) rather than randomly sampling hn+1 from the posterior distribution. We can use
this difference to attempt to diagnose whether people use a WSLS type algorithm when they are
solving a causal learning problem.

4. Evaluating inference strategies in children and adults

We now turn to the question of whether people’s actual responses are well captured by the
algorithms described in the previous section, which we explore using mini-microgenetic studies with
both adults and preschool children. Young children are a particularly important group to study for two
reasons. First, their responses are unlikely to be influenced by specific education or explicit training in
inference. Second, if these inductive procedures are in place in young children, they could contribute
to the remarkable amount of causal learning that takes place in childhood.

In particular, we explore children’s responses in a causal learning task in which they must judge
whether a particular artifact, such as a block, is likely to have particular effects, such as causing a
machine or another block to light up. In earlier studies using very similar methods (e.g. ‘‘blicket detec-
tor’’ studies) researchers have found that preschool children’s inferences go beyond simple associative
learning and have the distinctive profile of causal inferences. For example, children will use inferences
about the causal relation of the block and machine to design novel interventions on the machine –
patterns of action they have never actually observed – to construct counter-factual inferences and
to make explicit causal judgments including judgments about unobserved hidden features of the
objects (e.g. Bonawitz, van Schindel, Friel, & Schulz, 2012; Gopnik & Sobel, 2000; Gopnik et al.,
2004; Schulz, Gopnik, & Glymour, 2007; Sobel, Yoachim, Gopnik, Meltzoff, & Blumenthal, 2007).

Although in many contexts young learners demonstrate sophisticated casual reasoning, there are
numerous findings that children (and adults alike) have difficulty with explicit hypothesis testing
(e.g., Klahr, Fay, & Dunbar, 1993; Kuhn, 1989). Although young children clearly can sometimes
articulate hypotheses explicitly, and can learn them from evidence, they have much more difficulty
articulating or judging how hypotheses are justified by evidence. Our task is designed to explore
children’s and adults’ reasoning about a causal system, but does not require the learner to be meta-
cognitively aware of their own process of reasoning from the data.

In each experiment, we first determine whether the responses of both adults and children in these
tasks are consistent with Bayesian inference at the computational level. Then we explore whether
their behavior is consistent with particular learning algorithms, with special focus on the WSLS
algorithm and Independent Sampling. In particular, we might expect that if participants behave in
ways consistent with the WSLS algorithm we should observe dependencies between their responses.
Experiment 1 begins with an empirical investigation of the deterministic causal learning scenario we
described earlier. Experiments 2 and 3 examine how people make inferences in the stochastic
scenario.
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5. Experiment 1: Deterministic causal learning

5.1. Methods

5.1.1. Participants and design
Participants were 37 four- and five-year-olds (mean 56 months, range 52–71 months) recruited

from a culturally diverse daycare and local science museum and 60 adult undergraduate volunteers
recruited by flyers. Participants did not receive any compensation. Participants were randomly
assigned to one of two conditions: 18 children and 30 adults participated in an Evidence Type 1 con-
dition; 19 children and 30 adults participated in an Evidence Type 2 condition. One child in the Evidence
Type 2 condition was excluded from analysis due to technical malfunction of the stimuli during the
evidence presentation. There were no differences in children’s age between conditions (t(34) = 0.09,
p = 0.93).

5.1.2. Stimuli
Stimuli were six (6 cm3) cubic blocks. Three blocks were colored red and three colored yellow on all

but one side. A small light switch was surreptitiously controlled at the back of the block, which caused
the block to appear to glow through the uncovered side when activated.

5.1.3. Procedure
The procedure was identical for both children and adults except as noted below. Participants were

first introduced to the blocks and told that sometimes blocks like this might light up and sometimes
they might not, but it was the participant’s job to help figure out how these particular red and yellow
blocks work. Then participants were asked to predict what would happen if two red blocks were
bumped together, ‘‘Will they both light or will they both not light?’’ Participants were given
descriptive pictures as they generated their responses so that they could point to the pictures or
respond verbally. This was done to provide children with an alternative if they were too shy to
respond verbally. Participants were then asked what would happen if two yellow blocks were bumped
together: ‘‘Will they both not light or will they both light?’’ Finally, participants were asked what
would happen if a red and yellow block bumped into each other: ‘‘Will just the red light? Will just
the yellow light? Will they both light? Or will they both not light?’’ The order of presentation of ques-
tions was counter-balanced across participants. These initial responses gave a measure of participants’
prior beliefs about the blocks – their belief in the likely rule that governed how the blocks should
behave, before observing any information about the pattern of lighting between blocks.

After they provided an initial response, participants were then shown one of two patterns of
evidence. One group (in the Evidence Type 1 condition) was shown that when a red and yellow block
bumped together, just the yellow block activated. The other group (in the Evidence Type 2 condition)
was shown that when a red and yellow block bumped together, both blocks activated.3 Both groups of
participants were then asked again what would happen if a red and red block bumped together and what
would happen if a yellow and yellow block bumped together. If participants said ‘‘I don’t know’’ they
were prompted to make a guess.

5.2. Results

Children’s responses were video-taped and coded online by a research assistant who observed the
experiment either through a one-way mirror or sitting in the same room as the experimenter, facing
the child. A second research assistant recoded responses. Responses were unique and unambiguous,
and coder agreement was 100%; both coders were blind to hypotheses. During adult testing, the
experimenter wrote out the responses during the testing session and later recorded them electroni-
cally. A research assistant, blind to study hypotheses, checked the data entry to confirm that there
were no errors in transcription.
3 This evidence necessarily ruled out 12 of the 16 hypotheses, which were inconsistent with the observed evidence.
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To assess which theory each learner held during each stage of the experiment, we looked at the
causal judgments about each set of blocks interactions and selected the hypothesis consistent with
participants’ predictions. For example, if the participant responded that two red blocks would light
each other, two yellow blocks would not light each other, and a red block would light a yellow block
(but not vice versa) then the response was coded as theory 2; see Fig. 1.

5.2.1. Prior distribution
5.2.1.1. Children. Because the initial phase of the experiment was identical across conditions, we
combined the children’s responses in the initial phase to look at the overall prior distribution over
hypotheses. Children had a slight bias for theories that included a greater number of positive, lighting
relations. For both IS and WSLS models we estimated an empirical prior from this initial distribution
produced by the children. The frequencies of each causal structure were tabulated from the children’s
responses. The relatively large number of causal structures to choose from compared to the number of
participants resulted in a few structures that were never produced. To minimize bias from these
smaller sample sizes, smoothing was performed by adding 1 ‘‘observation’’ to each theory before nor-
malizing, consistent with using a uniform Dirichlet prior on the multinomial distribution over causal
structures (e.g., Bishop, 2006). The smoothed estimated prior distribution over children’s hypotheses
is shown in Fig. 1(b).

5.2.1.2. Adults. We also combined responses from both conditions in order to investigate the overall
prior distribution over adults’ responses and tabulated frequencies adding 1 to all bins before
normalizing. The estimated prior distribution over adult’s hypotheses is shown in Fig. 1(c).

5.2.2. Aggregate distribution
We then considered how responses would change when the learner received new evidence. We

computed the updated Bayesian posteriors for both conditions and for the children and the adults sep-
arately using the prior distributions above. Comparing the proportion of participants who endorsed
each theory following the evidence to the Bayesian posterior distribution revealed high correlations
(Children: r = .92; Adults: r = .97). So, at the computational level, the learners seemed to produce
responses that are consistent with Bayesian inference in this task. In the Evidence Type 1 condition
there appears to be mild deviations between the model predictions and children’s endorsement of
Theory 10 and Theory 14; however, comparing the proportion of responses predicted by the Bayesian
model for these theories to the proportion given by the children revealed no significant difference,
v2 (1, N = 30) = 1.2, p = .27.
Fig. 2. Results of the Independent Sampling and Win-Stay, Lose-Sample algorithms, as compared to the Bayesian posterior and
participant responses. (a) Predictions generated from children’s priors and children’s responses. (b) Predictions generated from
adult’s priors and adult’s responses. Dark bars represent the Evidence Type 1 and the lighter lines are Evidence Type 2.
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We also depict example aggregate results for the WSLS and IS algorithm. As can be seen in Fig. 2,
and consistent with the formal results provided as a proof in the appendices, both IS and WSLS
produce identical distributions, which also approximate the ideal Bayesian posterior.

5.2.3. Dependency predictions
Given that both children and adult response patterns on aggregate reflect Bayesian posteriors, we

can investigate which of the two approximation algorithms (WSLS or IS) best capture individuals’
responses. In particular, we investigate whether there are dependencies between learners’ responses
indicative of the WSLS algorithm.

5.2.3.1. Children. Results suggest that children’s responses following the evidence were strongly
dependent on their initial responses: If children generated a data-consistent response initially, they
were significantly more likely to give the same response again. Indeed, only 2 of the 15 children
who initially provided a would-be, data-consistent response, shifted to a different response following
the data. For comparison to the models, we generated a representative depiction of a WSLS and IS run
(see Fig. 3(a) and (b)). For both models, we initialized first responses to the distribution of responses
generated by the children in the Experiment (for maximal ease of visual comparison). Results show a
typical run of each model following one of two data observations provided in the experiment (Evidence
Type 1 and Type 2 conditions).

To more rigorously test whether children’s pattern of responding is consistent with the models, we
calculated the probability of switching hypotheses, given a first guess on the correct hypothesis, under
the IS algorithm. Combining both groups (Evidence Type 1 and Type 2) weighed by the proportion of
children starting from correct hypotheses in each of these groups, the probability of switching under
IS is p = .42. Note that only 2 of the 15 children who started with a correct hypothesis switched on
their second query. This is significantly fewer than predicted by the IS algorithm (Binomial, p < .05).
The pattern of children’s responding is thus inconsistent with the IS algorithm, and suggests
dependencies indicative of the WSLS algorithm. However, note that the deterministic WSLS algorithm
predicts that all children should retain their hypothesis if the evidence provided is consistent; in our
study, there were two children who observed consistent evidence and nonetheless changed responses
on the second query. We come back to these findings in the Discussion below.

5.2.3.2. Adults. Adults also reflected strong dependencies between responses (Fig. 3(d)). Only 3 of the
20 adults who initially provided a response that then turned out to be consistent with the data, shifted
to a different response afterward. This result is significantly fewer than predicted by the IS algorithm
(IS predicted shifting = 62%; Binomial, p < .0001) and is thus inconsistent with the IS algorithm. It does
reflect the dependencies between responses predicted by the WSLS algorithm. Thus, both children and
adults tended to stick with their initial hypothesis when data were consistent more than would be
predicted if sampling was independent.

5.3. Discussion

Our deterministic causal learning experiment demonstrates that learners’ responses on aggregate
return the posterior distributions predicted by Bayesian models. Importantly, these results show how
tracking learning at the level of the individual can help us understand the specific algorithms that
child and adult learners might be using to approximate Bayesian inference in deterministic cases.
The data from Experiment 1 suggest that preschoolers and adults show dependencies between
responses rather than independently sampling responses each time from the posterior. These results
extend previous work exploring WSLS strategies. They show that at least one strategy of this kind
provides a viable way to approximate Bayesian inference for a class of inductive problems, in
particular problems of deterministic causal inference. They provide evidence that WSLS is a more
appropriate algorithm for describing learners’ inferences in these deterministic settings.

However, the non-zero probability of switching following theory-consistent evidence is not
perfectly consistent with WSLS. Forgetting and other attentional factors may have led to some random
noise in the participants’ pattern of responding. A likely possibility is that learners may have believed



Fig. 3. Predictions of both models with priors generated from children’s initial predictions, compared against human judgments
(a) Independent Sampling, and (b) Win-Stay, Lose-Sample, and (c) children’s responses. Models with priors generated from
adults’ initial predictions (d) Independent Sampling, and (e) Win-Stay, Lose-Sample, and (f) adults’ responses. Dark lines
represent the data observation of a red and yellow block interacting and resulting in just the yellow block lighting, leaving only
hypotheses 2, 6, 10, and 14 consistent with the data. The lighter lines represent data observations of a red and yellow block
interacting and resulting in both the yellow and red block lighting, leaving hypotheses 4, 8, 12, and 16 consistent with the data.
For visual aid, dashed lines indicate cases where the initial response provided was consistent with the data, but the second
response provided switched to a different hypothesis.
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that the blocks lighting behavior was not perfectly deterministic. Thus, our WSLS algorithm that
permits stochastic data may better account for these results.

Because deviations from deterministic responding were rare, the results of this experiment do not
provide a strong basis against which to evaluate the stochastic version of our WSLS algorithm. Conse-
quently, in Experiments 2 and 3 we consider cases where the causal models were intentionally
designed to be stochastic, and examine how this affects the strategies that children and adults adopt.
We also increase the number of evidence and response trials in order to support more sophisticated
analyses.
6. Experiment 2: Stochastic causal learning

Experiment 1 investigated a special case of WSLS in deterministic settings; however, a potentially
more natural case of causal learning involves causes that are stochastic. In our earlier analyses, we
presented a special case of WSLS in stochastic scenarios where the learner chooses whether to resam-
ple a hypothesis based on the likelihood of the data they have just observed. To investigate whether
this algorithm captures human behavior, we designed an experiment with causally ambiguous, but
probabilistically informative evidence. We asked learners to generate predictions as they observed
each new piece of evidence and then compared learners’ pattern of responses to our models.

6.1. Methods

6.1.1. Participants and design
Participants were 40 preschoolers (mean 58 months, range 48–70 months) recruited from a cultur-

ally diverse daycare and local science museum and 65 undergraduates recruited from an introductory
psychology course. The participants were split into two conditions (N(children) = 20, N(adults) = 28 in
the Active then inactive condition; N(children) = 20, N(adults) = 32 in the Inactive then active condition).
An additional five adult participants were excluded for not completing the experiment and four
children were excluded for failing the comprehension check (see Procedure). There were no
differences in children’s age between conditions (t(38) = 0.01, p = 0.99).

6.1.2. Stimuli
Stimuli consisted of 13 white cubic blocks (1 cm3). Twelve blocks had custom-fit sleeves made

from construction paper of different colors: four red, four green, and four blue. An ‘‘activator bin’’ large
enough for 1 block sat on top of a [1500 � 18.2500 � 1400] box. Attached to this box was a helicopter toy
that lit up. The machine was activated by the experimenter, who surreptitiously pressed a hidden
button in the box as she placed a block in the bin. This led to a strong impression that the blocks
had actually caused the effect. There was a set of ‘‘On’’ cards that pictorially represented the toy in
the on position, and a set of ‘‘Off’’ cards that pictorially represented the toy in the off position. Because
adult participants were tested in large groups, a computer slideshow that depicted the color of the
blocks and the cards was used to provide the evidence for them.

6.1.3. Procedure
6.1.3.1. Children. Participants were told that different blocks possess different amounts of ‘‘blicket-
ness,’’ a fictitious property. Blocks that possess the most blicketness almost always activate the
machine, blocks with very little blicketness almost never activate the machine, and blocks with med-
ium blicketness activate the machine half of the time. A red block was chosen at random and placed in
the activator bin. The helicopter toy either turned on or remained in the off position. A corresponding
On or Off card was placed on the table to depict the event. The cards remained on the table throughout
the experiment. After five repetitions using the same red block for a total of six demonstrations,
participants were told that red blocks have the most blicketness (they activated 5/6 times). The same
procedure was repeated for the blue and green blocks. The blue blocks had very little blicketness
(activating the toy 1/6 times), and the green blocks had medium blicketness (activating 3/6 times).
Children were asked to remind the experimenter which block activated the machine the most, least,
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and a medium amount to ensure that children understood the procedure and remembered the prob-
abilistic properties of the blocks. Data from children who were unable to provide correct answers to
this comprehension check were eliminated.

After the comprehension check, a novel white block that lost its sleeve was presented and children
were asked what color sleeve the white block should have (red, green, or blue). This provided a mea-
sure of participants’ initial beliefs about the intended color of the novel block before observing any
evidence about whether or not the block activates the machine – the prior probability that a block
of a particular color would be sampled. Children were told they would be asked about the block a
few times. The white block was then placed into the bin four times and each time the participant
saw whether or not the toy activated. Following each demonstration, the appropriate On or Off card
was chosen and participants were asked to provide a guess about the right color for the block. Before
each guess the participants were told, ‘‘It’s okay if you keep thinking it is the same color and it is also
okay if you change your mind.’’

We designed the trials to include a greater opportunity for belief revision to most effectively test
our models. In the Active then inactive condition the toy turned on for the first trial and then did not
activate on the three subsequent trials. In the Inactive then active condition the toy did not activate on
the first trial, but turned on for the three subsequent trials. (See Fig. 4.) Children’s sessions were video
recorded to ensure accurate transcription of responses.

6.1.3.2. Adults. The procedure for adults was identical to that for the children with the following
exceptions. Participants in each condition were tested on separate days in two large groups. Partici-
pants were instructed to record responses using paper and pen and not to change answers once they
had written them down. Adults were also shown a computer slide show so they could more easily see
the cards depicting the evidence, and the slideshow remained on the screen throughout the
experiment. To ensure that participants were paying attention, they were asked to match each color
to the proper degree of blicketness (most, very little, medium). As with the children, adults were intro-
duced to the novel white block and were asked to record their best guess as to the color of the block
before they observed any demonstrations and after each demonstration.

6.2. Results

We evaluated models of participants’ behavior using three criteria. First, we assessed whether the
aggregate responses of children and adults were consistent with Bayesian inference. Both the WSLS
and IS algorithm approximate Bayesian inference in aggregate, so this does not discriminate between
these accounts, but it does potentially rule out alternative models. Second, we looked at participants’
trial-by-trial data to compute the probabilities with which they switched hypotheses. This allowed
us to compare the WSLS and IS algorithms, which make different predictions about switch probabilities.
Fig. 4. Depiction of the procedure used in Experiments 2 and 3.
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Third, we looked at the probability of the trial-by-trial choices that participants made under the WSLS
and IS algorithms. This produces log-likelihood scores for each model, which can be compared directly.

6.2.1. Comparison to Bayesian inference
6.2.1.1. Children. Responses were uniquely and unambiguously categorized as ‘‘red’’, ‘‘green’’, and
‘‘blue’’. A coder blind to hypotheses and conditions reliability coded 50% of the video clips; agreement
was 100%. We determined the parameters for the children’s prior distribution and likelihood in two
ways, based on initial responses or based on maximizing the fit to the Bayesian posterior. For the first
way (‘‘initial responses’’) priors were determined by the participants’ predictions about the color of
the novel block, prior to seeing any activations. The likelihood of block activation was determined
by the initial observations of block activations during the demonstration phase (5/6 red, 1/2 green,
1/6 blue). Children’s initial guesses before seeing the first demonstration (i.e. ‘‘on’’ or ‘‘off’’) reflected
a slight bias favoring the red blocks (50%), with blue (30%) and green (20%) blocks being less favored.
That is, prior to observing information about the novel block, children seemed to favor the guess that
the block sampled was the one that would activate the machine most often. For the second way
(‘‘maximized’’) we searched for the set of priors and the likelihood activation weights that would
maximize the log-likelihood for the model.4

We compared the proportion of children endorsing each block at each trial of the experiment to the
Bayesian posterior probability. Using either set of parameters, children’s responses were well captured
by the posterior probability (initial responses: r(22) = .77, p < .0001; maximized: r(22) = .86, p < .0001,
see Fig. 5(a–d)). In fact, because of the general noise in the data as reflected in the relatively high
standard deviations for small samples and categorical responding, these fits between the model and
the data are actually about as high as we could expect. Indeed, the correlations between the models
and the data are not significantly different from those obtained by finding the correlation of a random
sample of half of the participant responses compared to the other half (r(22) = .84; Fisher r-to-z
transformation, initial: z(24) = �0.65, p = ns; maximized: z(24) = 0.23, p = ns).

6.2.1.2. Adults. Adult responses were also uniquely and unambiguously categorized as ‘‘red’’, ‘‘green,’’
and ‘‘blue’’. There was a slight bias to favor green blocks (60%), with red (25%) and blue (15%) blocks
being less favored.5 As with the children’s data, we determined the parameters for the prior distribution
and likelihood by using initial responses or using the maximized parameters.6

We then compared the proportion of adults endorsing each color block at each trial to the Bayesian
posterior probability. Using either set of parameters, adult participant responses were well captured
by the posterior probability (initial responses: r(22) = .76, p < .001; maximized: r(22) = .85, p < .0001,
see Fig. 5(e–h)).

Both child and adult responses on aggregate, then, were well captured by the predictions of Bayes-
ian inference. The primary difference between the model and data is that adults converged more
quickly to a block choice than predicted by the model. This may be a consequence of pedagogical rea-
soning, a point we return to in the General discussion. However, given that children and adult
responses on aggregate are well captured by the posterior probability predicted by Bayesian inference,
we now turn to the question of what approximation algorithm best captures individual responding,
and to whether responses showed the distinctive dependency patterns of the WSLS algorithm.

6.2.2. Comparison to WSLS and IS
To compare people’s responses to the WSLS and IS algorithms, we first calculated the ‘‘switch’’

probabilities under each model in the two ways we described previously: using the parameters from
4 The maximized priors for children were .38 red, .22 green, .4 blue; these priors correspond to the priors represented by child
participants. The maximized likelihood was .73 red, .5 green, .27 blue, which also corresponds to the likelihood given by the initial
activation observations.

5 Such a bias is consistent with people’s interest in non-determinism; the green blocks were the most stochastic in that they
activated on exactly half the trials.

6 The maximized priors for adults were .27 red, .48 green, .25 blue; these priors correspond strongly to the priors represented by
participants. The maximized likelihood was .85 red, .5 green, .16 blue, which also corresponds strongly to the likelihood given by
the initial activation observations.



Fig. 5. Bayesian posterior probability and human data from Experiment 2 for each block, red (R), green (B), and blue (B) after
observing each new instance of evidence, using parameters estimated from fitting the Bayesian model to the data. WSLS and IS
produce the same aggregate result reported here. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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the initial responses and using the previously estimated maximized parameters. Calculating switch
probabilities for IS is relatively easy: because each sample is independently drawn from the posterior,
the switch probability is simply calculated from the posterior probability of each hypothesis after
observing each piece of evidence.



Fig. 6. Correlations between the probability of switching hypotheses in the models given the maximized parameters and the
adult data in Experiment 2, for (a) the Win-Stay Lose-Sample algorithm and (b) Independent Sampling.
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Recall that in the stochastic case of WSLS, participants should retain hypotheses that are consistent
with the evidence, and resample proportional to the likelihood, p(d|h). Thus, switch probabilities for
WSLS were calculated such that resampling is based only on the likelihood associated with the current
observation, given the current h. That is, with probability equal to this likelihood, the learner resam-
ples from the full posterior, which is computed using all the data observed up until that point. For
example, if a participant guessed ‘‘red’’ initially and then observes that the novel block does not acti-
vate the toy on trial 1 (e.g. an outcome that would occur 1/6 times given it was actually a red block),
then under WSLS she should stay with the guess ‘‘red’’ with probability 1/6 and resample a guess from
an updated posterior that takes into account all the data observed so far with probability 5/6.

6.2.2.1. Children. We computed the proportion of children ‘‘switching’’ given each color block at each
trial and compared it to the predicted switch probabilities of each model. Children’s responses were
equally well captured by the WSLS and IS model when comparisons were made using the maximized
parameters (WSLS: r(22) = .61, p < .01; IS: r(22) = .61, p < .01; Fisher r-to-z transformation, z(22) = 0,
p = ns) or using parameters given by the initial responses (WSLS: r(22) = .58, p < .01; IS: r(22) = .58,
p < .01; Fisher r-to-z transformation, z(22) = 0, p = ns). We computed the log-likelihood scores for both
models. The IS model better fit the child data than the WSLS model (initial responses: log-likelihood
for WSLS = �229, log-likelihood for IS = �205; maximized: log-likelihood for WSLS = �217, log-likeli-
hood for IS = �197). These log-likelihood scores can also be compared using Bayes factors, which in
this case correspond to the difference in the two log-likelihoods. Following guidelines proposed by
Kass and Raftery (1995) the Bayes factors revealed ‘‘very strong’’ evidence suggesting that the IS model
better fit the data than the WSLS model, using either the initial responses or the maximized
parameters. However, taken together, these results suggest that while the pattern of dependencies
between children’s responses is captured marginally better by the IS algorithm, neither model
provided a particularly strong fit.

6.2.2.2. Adults. We computed the proportion of adults ‘‘switching’’ given each color block at each trial
and compared it to the predicted switch probabilities of each model. Adult responses were much
better captured by the WSLS algorithm using the maximized parameters (r(15) = .81, p < .0001)7
7 In 5 of the 24 possible condition by color by trial cells, there were fewer than 2 data points possible (e.g. none or only 1 adult
had generated a ‘‘red’’ response previously and so switching score from red on that trial to the next could only be 0, or 0 and 1
respectively.) These data cells were dropped from adult correlation scores.
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and the parameters given by participant initial responses (r(15) = .78, p < .001) as compared to the IS
algorithm (maximized: r(15) = .58, p = .02; initial responses: r(15) = .39, p = ns), although given the small
sample size, these correlation coefficients were not significantly different from each other, Scatterplots
are shown in Fig. 6. We also computed the log-likelihood scores for both models. The WSLS model better
fit the adult data than the IS model (initial responses: log-likelihood for WSLS = �221, log-likelihood for
IS = �262; maximized: log-likelihood for WSLS = �215, log-likelihood for IS = �251). Comparing Bayes
Factors based on these log-likelihoods revealed ‘‘very strong’’ evidence in favor of the WSLS model for
both sets of parameters (Kass & Raftery, 1995). These results suggest that the pattern of dependencies
between adults’ responses is better captured by the WSLS algorithm than by an algorithm such as IS that
produces independent samples.

6.3. Discussion

Adult responses in Experiment 2 and in Experiment 1 were best captured by the WSLS algorithm. In
Experiment 2, the adults’ pattern of responses were highly correlated with predictions from WSLS
(whether using initial responses to set parameters or using maximized values based on correlating
parameters to the Bayesian posterior). Both correlation and log-likelihood scores were greater for
the WSLS model as compared to the IS model. This suggests that the adult predictions are consistent
with the dependencies predicted by the WSLS algorithm. Moreover, there was a close fit to the WSLS
model itself.

Although the overall pattern of children’s responding was consistent with Bayesian inference, chil-
dren’s responses in Experiment 2 were not well correlated with either the WSLS or IS model, and fur-
ther analyses of the likelihood scores under each model revealed a marginally better fit to the IS
model. These results stand in conflict with the results from Experiment 1, which reflected strong
dependencies in children’s predictions that are characteristic of the WSLS algorithm.

Why might children have shown less dependency and greater switching between responses in
Experiment 2? One major difference between the two experiments is that in Experiment 1, children
were not asked about the same set of interactions after having observed new data; in contrast, chil-
dren were asked about the same block on repeated trials in Experiment 2. Such questioning may have
led children to believe that the experimenter was challenging their initial responses and thus may
have led to greater switching, which would not be consistent with WSLS. Indeed, recent research sug-
gests that repeated questioning from an experimenter gives children strong pragmatic cues that initial
responses were incorrect, leading the child to switch responses, even if they had been confident in
their initial prediction (Gonzalez, Shafto, Bonawitz, & Gopnik, 2012). In Experiment 3, we investigate
this possibility with a minor modification to the procedure used in Experiment 2.
7. Experiment 3: Stochastic causal learning when exchanging testers

In Experiment 3, we investigate the possibility that the greater than predicted amount of switching
by children in Experiment 2 was caused by repeated questioning from the same experimenter. To
control for this, we replicated the procedure in Experiment 2 with one minor modification: instead
of having the same experimenter ask children about their beliefs after each new observation of data,
we had a new experimenter come in for each subsequent trial. As suggested by Gonzalez et al. (2012),
the ignorance of each new experimenter to the children’s previous guess should effectively break any
possible pragmatic assumptions that may cause children to believe that repeated questioning is an
indication that their initial response was incorrect.

7.1. Methods

7.1.1. Participants and design
Participants were 40 preschoolers (mean 58 months, range 48–71 months) recruited from a cultur-

ally diverse daycare and local science museum. The participants were split into two conditions (Active
then inactive: N = 20; Inactive then active: N = 20). An additional eight participants were excluded for
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one of three reasons: failing the comprehension check (3), non-compliance with the procedure – due
to being uncomfortable with interacting with such a large number of experimenters (4), and experi-
menter error (1). There were no differences in children’s ages between conditions (t(38) = 0.10,
p = 0.92) or across the three experiments (F(2,113) = 0.84, p = 0.434).

7.1.2. Stimuli
Stimuli were identical to those used in Experiment 2.

7.1.3. Procedure
The procedure was identical to Experiment 2 with the following exceptions, which occurred after

Experimenter 1 obtained prior hypotheses from each child. The experimenter said to the child, ‘‘Well, I
have to go write something down, but my friend [Experimenter 2’s name] is going to come in and take
a turn playing with you and these toys. She has never seen this block before and she does not know
what color coat it should have so you’ll get to help her figure it out.’’ Experimenter 1 retrieved Exper-
imenter 2 from outside the room and Experimenter 2 said, ‘‘I really like to play with blocks. Wow, it’s a
block without a coat! Should I put it in this machine to see what happens?’’ Just as in Experiment 2,
the machine either activated or did not activate (depending on the condition). The experimenter and
child then chose a card to depict the event and the experimenter asked the child what color they
thought the block was. Experimenter 2 told the child that another friend who had never seen the block
before was going to come and have a turn. Experimenters 3 through 5 followed the same script as
Experimenter 2. Many of the children immediately offered a guess to the new experimenter when
she entered the room. When this happened the experimenter said, ‘‘Okay, you think it should have
a [red/green/blue] coat. Well, let’s see what happens when I take a turn. It’s okay if you keep thinking
it should have a [red/green/blue] coat and it’s okay if you change your mind and think it’s a [red/green/
blue] coat.’’

7.2. Results

7.2.1. Comparison to Bayesian inference
Responses were uniquely and unambiguously categorized as ‘‘red’’, ‘‘green’’, or ‘‘blue’’. A coder

blind to hypotheses and conditions reliability coded 50% of the clips; agreement was 100%. As with
Experiment 2, we determined the parameters for the children’s prior distribution and likelihood in
two ways: values given by initial responses and the maximized priors.8 As in Experiment 2, children’s
initial guesses (before seeing the first demonstration) reflected a slight bias favoring the red blocks (50%),
with blue (20%) and green (30%) blocks being less favored. Comparing the proportion of children endors-
ing each color block at each trial to the Bayesian posterior probability, using either set of parameters,
revealed strong correlations (initial responses: r(22) = .67, p < .001; maximized: r(22) = .87, p < .0001).
These correlations are not significantly different from those obtained in Experiment 2 (Fisher r-to-z
transformation, initial: z(24) = �0.6, p = ns; maximized: z(24) = 0.25, p = ns).

These results replicate Experiment 2; children’s responses on aggregate were well captured by the
predictions of Bayesian inference. We turn to the primary question of interest: do children show the
dependencies we would predict on the WSLS model?

7.2.2. Comparison to WSLS and IS
To compare children’s responses to the WSLS and IS algorithms, we calculated the ‘‘switch’’

probabilities using both sets of parameters (initial, maximized). We computed the proportion of
children ‘‘switching’’ given each color block at each trial and compared it to the predicted switch prob-
abilities of each model. Children’s responses were better captured by the WSLS algorithm than by the
8 The maximized priors for children were .46 red, .21 green, .33 blue; these priors correspond to the priors represented by child
participants. The maximized likelihood was .69 red, .5 green, .31 blue, which also corresponds to the likelihood given by the initial
activation observations.
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IS model when comparisons were made using the maximized parameters (WSLS: r(14) = .79, p < .001;
IS: r(14) = .67, p < .01)9 and were also better captured by WSLS when using parameters given by the
initial responses (WSLS: r(14) = .78, p < .001; IS: r(14) = .70, p < .01), although given the small sample
size, these correlation coefficients were not significantly different from each other. We computed the
log-likelihood scores for both models. The WSLS model fit the data better than the IS model (initial
responses: log-likelihood for WSLS = �185, log-likelihood for IS = �223; maximized: log-likelihood for
WSLS = �172, log-likelihood for IS = �200; Bayes Factors revealed ‘‘very strong’’ evidence in favor of
WSLS for both sets of parameters) and also better than the log-likelihood scores of the children’s
responses in Experiment 2. Children showed a better fit to the WSLS model in this experiment than in
Experiment 2. In sum, correlations were higher using maximized parameters and the parameters given
by initial responses, and the log-likelihood scores in this experiment were also higher than the log-like-
lihood scores for WSLS in Experiment 2.

7.3. Discussion

As with Experiments 1 and 2, children’s responses on aggregate corresponded strongly to Bayesian
inference. However, in this experiment unlike in Experiment 2, the correlation and log-likelihood
scores were greater for the WSLS model as compared to the IS model. Moreover, the correlations to
the model were high overall, near .8. This suggests that the dependencies in children’s predictions
are consistent with the WSLS algorithm when other possible methodological, pragmatic concerns
are removed. In turn this suggests that the WSLS algorithm may be an appropriate way to capture
dependencies in children’s responses, but also suggests that such dependencies are easily influenced
by social information. Children are extremely sensitive to possible cues provided by experimenters
and will use those cues when they generate predictions.
8. Consideration of alternative models

One primary goal of this paper is to connect algorithmic and computational level accounts of learn-
ing, offering an analysis of the conditions under which WSLS strategies approximate Bayesian infer-
ence. This analysis reveals that there are special forms of WSLS strategies that produce behavior
that on aggregate approximates Bayesian inference in deterministic and stochastic settings. However,
it is worth considering the predictions that alternative models of learning and inference make on these
tasks. Here we consider a few alternatives and discuss how these approaches relate to our model.

8.1. Associative models

One might wonder how associative accounts relate to the models proposed here. A traditional asso-
ciative model, the Rescorla–Wagner model (Rescorla & Wagner, 1972), has a direct Bayesian general-
ization known as the Kalman filter (Dayan & Kakade, 2001). The main difference between these
models and the Bayesian models we consider here is that associative models capture how one might
update estimates of the strength of a causal relationship, assuming that causes combine to influence
their effects in a linear fashion, while the models that we have focused on infer causal structure (i.e.,
whether or not causal relationships exist at all, or which class of causal relationship is being
exhibited).

We could imagine a learner using an associative updating mechanism for the experiments pre-
sented here, considering the degree to which the activation of the novel block is consistent with
the behavior of the Red, Green, and Blue block. Such a model, however, must then indicate how a lear-
ner chooses among these possibilities. Associative models are known to be able to exhibit probability
matching behavior, but this is typically just matching the frequency with which different actions are
rewarded (e.g. see Jones & Liverant, 1960; Myers, 1976; Neimark & Shuford, 1959; Vulkan, 2000;
9 In 8 of the 24 possible condition by color by trial cells, there were fewer than three data points possible; these data cells were
dropped from correlation scores.
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though see Denison et al., 2013). The phenomenon that needs to be accounted for in our data is prob-
ability matching to the posterior distribution indicated by the Bayesian model, which does not relate
in a simple way to a past history of contingency or reward. Even if the model predicted probability
matching to the posterior, this would simply implement the Independent Sampling algorithm against
which we compared our WSLS algorithm.
8.2. Reducing cognitive load

In Appendix B, we define a second special case of WSLS that approximates Bayesian inference but
minimizes the rate at which sampling from the posterior is required. In our paper, we focus on the first
case (where the likelihood given the current data is considered) because it does not require the learner
to consider the likelihoods of all other hypotheses relative to the currently held hypothesis. However,
another way to reduce cognitive load is simply to not consider whether to stay or shift after seeing
each piece of data. Instead a learner could let a small amount of data amass over N trials, considering
the result of those last N trials when choosing whether to stay or shift.

Under the simple algorithm that has been our focus in this paper, increasing the number of trials
used in the decision to stay or shift would exponentially increase the probability that the learner
would resample (following the same logic as when the outcome of ten fair coin flips is significantly
smaller than a single flip of the coin). If a learner (in effect) ‘‘skipped’’ the resampling step occasionally,
and hypotheses were chosen only after each sequence of N trials, using the data from those N trials,
this model would approximate Bayesian inference in aggregate – it is just WSLS with a different
way of characterizing the ‘‘data’’ observed on each trial. However, the higher rate of switching would
mean that the predictions of this WSLS model would be closer to the IS model, and thus more difficult
to contrast.

More sophisticated WSLS algorithms, such as those in the second class of algorithms we discuss in
Appendix B, could make it possible to reduce the frequency of deciding whether to stay or shift with-
out increasing the rate of resampling, and are worth exploring in future work. As our primary goal was
to compare WSLS with IS, we chose to solicit participant predictions after every trial to maximize dif-
ferences between the models. Querying the participants had the effect of ‘‘forcing’’ them to consider
hypotheses after each trial, which might have pre-empted the natural dynamics of hypothesis updat-
ing. One might be interested in whether learners actually do consider their hypotheses after each new
observation of data, in the absence of querying. Of course, the only way to assess the models is by
recording a measure of the learner’s current beliefs; it is not immediately obvious how one might
retrieve a learner’s current belief state without ‘‘triggering’’ the sample step. Future work may inves-
tigate this separate, but interesting question of whether, and how often, learners choose to reconsider
their beliefs when independently exploring in the absence of external queries.
8.3. Memory

8.3.1. The role of memory in the WSLS model
One might be concerned that the WSLS principle is too simple to support intelligent inferences in

that it appears there is no ‘‘memory’’ in the system. However there is a sense in which our WSLS algo-
rithm does have memory. It may appear that a learner who sees a hundred trials consistent with a sin-
gle hypothesis and a learner who observes only one such trial will be equally likely on the subsequent
trial to abandon their hypothesis if the data are inconsistent. In fact, however, our model simply pre-
dicts that the two learners will be equally likely to resample their hypotheses. Since these samples are
drawn from the posterior, given all evidence observed so far, this provides a form of memory. The first
learner, who has observed a hundred consistent trials, is resampling from a posterior that is weighted
very strongly in favor of the hypothesis in consideration, whereas the second learner – who has
observed just a single trial – will be sampling from a more uniform distribution. As a result, the first
learner is more likely to resample the hypothesis he was just considering, while the second learner is
more likely to sample an alternate hypothesis. This means that the first is more likely to maintain
her hypothesis than the second learner.
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8.3.2. Inhibited memory in WSLS models
A WSLS model with limited memory might use the same metric for deciding whether to stay or

shift, but would instead sample from a posterior distribution based only on the last K observations.
This kind of model would be appealing from an algorithmic perspective, because the learner would
only need to keep track of the last few observations in updating their posterior. Although this model
does not approximate a Bayesian solution for small values of K, it converges to an approximation of
Bayesian inference as K becomes large.

We compared this kind of model to our participant data in a few ways. Because there are only four
evidence trials in our Experiment 2, and taking K = 4 is thus the same as computing the full Bayesian
posterior, we computed correlations between this model and participant results for K = {1,2,3} for our
three comparison criteria. First, we implemented this model and computed correlations to the overall
aggregate response pattern of adults (Experiment 2) and children (Experiment 3). Second, we
computed the switch probabilities for all three of the K model variants. Third, we computed the log
likelihood scores for all three of the K models. For both adults and children, we found correlations that
were not significantly different across any of these three measures (see Appendix C, Tables 1a and 1b).

8.3.3. Empirical investigation of the inhibited memory WSLS models
Although we did not find significant differences between the inhibited memory WSLS model and

our full memory WSLS model in explaining the results of our experiments, the inhibited model seems
intuitively like a poor characterization of human learning and performance because it does not
account for cases in which data accumulate over numerous trials, resulting in strongly stable beliefs.
Our original experiments were not designed to test for the role of mounting evidence because we were
interested in cases in which the WSLS and IS models would make very different predictions (which can
only be tested at the individual level, as both algorithms converge to Bayesian predictions on aggre-
gate). In the interest of comparing WSLS to these alternative memory models, we ran a simple supple-
mentary experiment. In this experiment, participants first receive mounting evidence for the ‘‘Red’’
block; the machine activates every time the novel test block is placed on the machine. Then there
are two evidence trials in which the machine does not activate; if the participant believes the block
is ‘‘Red’’ going into the trials, the failed activation is surprising, but not unexplainable.

After encountering trials in which the block does not activate the machine, a WSLS model sampling
from the updated distribution predicts continued endorsement for the ‘‘Red’’ block. This is because the
initial data weigh the posterior so strongly in favor of ‘‘Red’’, that a few surprising trials do not signif-
icantly change this bias. Thus, ‘‘Red’’ is likely to be resampled when the surprising trial is considered.
However, the inhibited memory WSLS model does not maintain this biased posterior. Thus, it will
show a sudden, drastic shift following these few anomalous trials, with most of the data redistributing
to a Blue or Green block.

We collected data from 20 adult participants over Amazon Mechanical Turk, following an online
version of the same probabilistic block paradigm used in Experiment 2. After learning about the
machine and the probability of activation for each block color, participants were introduced to the
novel block and asked to make a guess about the block’s color. The participants then observed eight
trials in which the machine activates, two trials in which the machine does not activate, and finally
followed by two trials in which the machine activates again. After each trial, participants are asked
about the color of the novel block.

We determined the priors on the red, green, and blue blocks by looking at the distribution of
responses for each on the first trial (prior to observing any evidence). Our experiment tested relatively
few participants to get a reasonable distribution on the prior; to get a close approximation to the ideal
priors, we also included data from an additional 140 participants, who had completed an unrelated
study, but for whom the procedure was identical up to the point of the prior solicitation. As with
our data from Experiment 2, the online participants in this experiment had a prior preference for green
blocks (75% respondents), and weaker preferences for red (17%) and blue (8%) block guesses. On aggre-
gate, participants quickly converged to guessing ‘‘Red’’ following the presentation of repeated activa-
tion. By the fourth trial greater than 90% of participants believed the block was red. Importantly,
participants continued to produce ‘‘Red’’ responses at near ceiling (>90%) for the remaining 8 trials,
even after observing the 9th and 10th trial in which the machine did not activate.
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Our first criterion for model comparison is whether the models capture the aggregate data. The
Bayesian model captured these aggregate results (r = .91, p < .0001). We also implemented the
inhibited memory model at K = 2 (as this was the best performing model given the original data). In
contrast to the Bayesian model, the inhibited memory model failed to capture the aggregate results;
in fact, there was no relationship between the predictions of the inhibited memory model and the data
(r = .05, p = ns). The Bayesian model significantly outperformed the inhibited memory model, z(36) = 6,
p < .0001). Because the memory model failed on the first criterion – capturing the aggregate data,
follow-up analyses of the trial-by-trial switching and log-likelihood scores would also indicate
significant outperformance of the WSLS model over the inhibited memory model.
8.4. Simplified WSLS algorithms

The key difference between our WSLS algorithm and previous WSLS algorithms that have been con-
sidered in the literature (e.g., Restle, 1962) is that in our algorithm the distribution from which new
hypotheses are sampled is updated over time, given the aggregate data from past experience. This
is what allows the algorithm to approximate Bayesian inference. We can also consider what happens
to the WSLS algorithm when we adjust the distribution that samples are drawn from. The simplest
two alternative models either draw samples from a uniform distribution or from the original prior
distribution. Such a model is actually a version of the inhibited memory model, where K = 0 and the
posterior remains constant. Importantly, this simplified WSLS model diverges from our model,
because it does not redraw from a continually updated posterior distribution (thus inhibiting it from
approximating Bayesian inference in aggregate). These simpler models instead spend more time
(relative to other hypotheses) on hypotheses that are more consistent with the data.

Our experiment was not designed to test for the role of mounting evidence, critical for the relative
stability of strongly held beliefs, so implementing this model did not reveal significantly different cor-
relations than our WSLS model obtained (see Appendix C). However, as illustrated by our additional
experiment that induces a strong bias for the red block, such a model seems intuitively like a poor
characterization of human learning and performance. Indeed, for the supplementary experiment
described in Section 8.3, neither the Sample-from-Uniform (r = �.03) nor the Sample-from-Prior
(r = .72) performed as well as the Bayesian model at capturing the aggregate data (Uniform vs. Bayes:
Z(36) = 6.33, p < .0001; Prior vs. Bayes: Z(36) = 2.52, p = .01). These results demonstrate significant
superiority of our WSLS algorithm over these simpler alternatives.
8.5. Model summary

We designed causal learning tasks that that we believed would likely meet the first criteria for
investigating algorithmic difference – that responses on aggregate will approximate Bayesian
inference. Our causal learning paradigm was inspired by the relatively recent approaches that solicit
intuitive causal judgments and that tend to yield Bayesian consistent responses by children and adults
(e.g., Bonawitz & Lombrozo, 2012; Denison et al., 2013; Griffiths et al., 2011; Sobel, Tenenbaum, &
Gopnik, 2004). These tasks are likely more natural for participants than the traditional concept
learning, probability matching, and decision making tasks which might require meta-cognitive and
pragmatic approaches to solve. Thus, task differences may affect the learning strategies employed,
explaining the differences between previous studies supporting alternate forms of the WSLS strategy
and our task.

Our primary goal in this paper is to develop cognitively plausible algorithms that efficiently
approximate optimal Bayesian predictions. Nonetheless, it is important to understand how additional
cognitive limitations such as memory constraints, response noise, and other psychological processes
might be incorporated into algorithms that approximate Bayesian inference. A detailed discussion
of this approach is outside the scope of this paper, but we recommend Griffiths, Vul, and Sanborn
(2012) and Bonawitz, Gopnik et al. (2012) as further reading on connecting the algorithmic and
computational levels of cognition.
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9. General discussion

Our results show that a mini-microgenetic method can help us understand the specific algorithms
that learners might be using to approximate Bayesian inference. First we introduced an algorithm,
Win-Stay, Lose-Sample, based on the Win-Stay, Lose-Shift principle, that approximates Bayesian infer-
ence by maintaining a single hypothesis over time. We proved that the marginal distribution over
hypotheses after observing data will always be the same for this algorithm as for sampling hypotheses
independently from the posterior (an algorithm that we refer to as Independent Sampling). That is,
both algorithms return a distribution over responses consistent with the posterior distribution
obtained from Bayesian inference. Our analysis also made clear that there are important differences
in what WSLS and IS predict for the dependency between guesses, making it possible to distinguish
these algorithms empirically.

We explored whether people actually use algorithms like these to solve inductive inference prob-
lems in two simple causal learning tasks. Our experiments were designed with two sets of analyses in
mind. First in our experiments, both children’s and adults’ overall responses are consistent with
Bayesian inference. Second, the algorithmic level analysis revealed that the dependencies between
an individual’s responses are characteristic of the WSLS algorithm. Participants did not independently
sample responses each time from the posterior. These results extend previous work exploring WSLS
strategies. They show that at least one strategy of this kind provides a viable way to approximate
Bayesian inference. They also provide evidence that WSLS is an appropriate algorithm for describing
people’s inferences in both deterministic and stochastic causal learning tasks.

In what follows, we turn to a broader discussion of the idea of connecting probabilistic models of
cognition with simple cognitive processes by exploring algorithms for approximating Bayesian infer-
ence. We then discuss how these approaches can inform developmental psychology and vice versa.
We make some proposals about how these algorithms are affected by sampling assumptions, such
as pedagogy. Finally, we look ahead to see how future work can inform these questions.
9.1. Connecting algorithms to Bayesian inference

Probabilistic models of cognition have become increasingly prevalent and powerful, but they are
limited. Literally following the procedures of Bayesian inference by enumerating and testing each pos-
sible hypothesis is computationally costly, and so could not be the actual algorithm that learners use.
Instead learners must use some other algorithm that approximates ideal Bayesian inference. Consid-
ering the algorithmic level of analysis more seriously can help to address these significant challenges
for Bayesian models of cognition.

In fact, some classic empirically generated psychological process models turn out to correspond to
the application of Monte Carlo methods, which approximate ideal Bayesian inference. For example, Shi
et al. (2008) showed that importance sampling corresponds to exemplar models, a traditional process-
level model that has been applied in a variety of domains. Sanborn et al., (2010) used particle filters to
approximate rational statistical inferences for categorization. Bonawitz and Griffiths (2010) show that
importance sampling can be used as a framework for analyzing the contributions of generating and
then evaluating hypotheses.

The work we have presented here provides a new contribution toward this literature on ‘‘rational
process models’’. While most of the previous work employing these models has focused on showing
how such models can reproduce and explain existing effects, here we have set up an experimental
design with the explicit goal of discerning which algorithm learners might be using. As a result, this
novel approach helps us to empirically explore the explicit algorithms in human cognition and
understand how they connect to computational level explanations.
9.2. Algorithms and development

The computational level has provided an important perspective on children’s behavior, affording
interesting and testable qualitative and quantitative predictions that have been borne out empirically.
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But we have suggested that this is just the starting point for exploring learning in early childhood. By
considering other levels of analysis we can help to address significant challenges for Bayesian models
of cognitive development. In particular we can begin to address the problem of how a learner might
search through a (potentially infinite) space of hypotheses. This problem might be particularly
challenging for young children who, in at least some respects, have more restricted memory and infor-
mation-processing capacities than adults (German & Nichols, 2003; Gerstadt et al., 1994). WSLS is one
algorithm that provides a plausible account of belief revision in early childhood and a practical start-
ing point for addressing the concerns raised by Bayesian models of development.

For example, both WSLS and IS algorithms can be seen as extreme versions of particle filters:
Independent Sampling is similar to the case where there is a large set of particles drawn from the pos-
terior and one member of the set is drawn at random for each query; WSLS is similar to using a single
particle that is resampled from the posterior when the particle becomes inconsistent with the data.
There may be some value in exploring algorithms that lie between these extremes, with a more mod-
erate number of particles. Future work could examine the degree to which fewer or greater numbers
of particles capture inference and to what degree these constraints change with age and experience. In
particular, developmental changes in cognitive capacity might correspond to changes in the number of
particles, with consequences that are empirically testable as changing the number of particles will
result in different patterns of dependency.
9.3. Pedagogical reasoning in the causal learning tasks

In any Bayesian model, the learner must make assumptions about how data were generated. These
assumptions can lead to different predictions, but are not at odds with the WSLS model. For example,
the likelihood term which accounts for the switching probability in WSLS can be influenced by
assumptions about how the data are sampled – such as in the context of teaching, which can lead
to faster convergence on the correct concept.

In Experiment 2, the aggregate distribution of adult responses shifted more dramatically than pre-
dicted by the Bayesian model we presented. It is likely, given the context of showing participants a
predetermined computer slideshow, that adults were making a pedagogical assumption (Shafto &
Goodman, 2008), which would better capture the data. Pragmatically, adults might have wondered,
‘‘Why is this experimenter showing me a predetermined slideshow if they don’t already have a goal
in mind – to teach me a specific concept.’’ Additionally, recruiting adult participants from a classroom
setting may have pedagogically-primed the participants. Also consistent with the pedagogical
framework, the act of showing an initially ‘‘misleading’’ trial may have led the participants to believe
that they were being intentionally deceived, which would have led to more rapid convergence to the
alternate block.

Children in Experiment 2 showed a greater than predicted propensity to switch responses between
guesses. This is consistent with another consequence of pedagogy: the perceived intention of the
experimenter can itself be a form of evidence. For example, previous research shows that repeated
questioning from a knowledgeable experimenter provides strong cues that the child’s previous guess
was incorrect and should be changed (Gonzalez et al., 2012). In Experiment 3, we tested the
hypothesis that this may have been a consequence of a pedagogical assumption made by the children.
Children might wonder: ‘‘Why is this adult asking me the same question over and over if I am giving a
reasonable answer? After all, it is her toy.’’ When this assumption was diminished in Experiment 3,
children showed less shifting and their pattern of responding was captured by WSLS. Future work
may develop additional WSLS algorithms that take into account these assumptions by the learner
about the data.
9.4. Future work

Connecting the computational and algorithmic levels is a significant challenge for Bayesian models
of cognition, and this is only a first step in understanding the psychological processes at work in causal
inference. We believe that there are several important directions for future research in this area.
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First, it would be interesting to test the WSLS algorithm’s predictions across various psychological
experiments that have relied purely on a Bayesian inference approach. This would allow for a better
assessment of the WSLS algorithm’s efficiency over a wider range of tasks and would provide a way to
investigate the potential scope of its use by human learners. In particular, given previous arguments
for use of the WSLS principle in concept learning (Restle, 1962), this may be a place to start a broader
investigation. Other work that has found dependencies in human response patterns (e.g., Vul and
Pashler, 2008) suggests that strategies that successively evaluate variants on a hypothesis might be
relevant in other domains as well.

In addition to considering a wider range of tasks, future work should explore a wider range of algo-
rithms. For example, it will be interesting to explore algorithms that shift from one hypothesis to the
next by modifying the current hypothesis in a principled and structured manner such that the learner
need not ‘track’ the posterior distribution during learning. Gibbs sampling (e.g. Robert & Casella, 2004)
provides one example of a strategy of this kind that has been explored in the past (Sanborn et al.,
2010), but there may be other algorithms in this arena that are worth investigating and attempting
to relate to human behavior.

We constrained our space to a modest number of hypotheses, but other work has begun to examine
how hypothesis spaces may be learned and simultaneously searched (Bonawitz, Gopnik et al., 2012;
Katz, Gooman, Kersting, Kemp, & Tenenbaum, 2008; Kemp, Goodman, & Tenenbaum, 2011; Kemp,
Tenenbaum, Niyogi, & Griffiths, 2010; Ullman et al., 2010). This enterprise should be jointly developed
with approaches taken here that explore the space of plausible algorithms that capture people’s causal
inferences.

An individual learner may also employ different strategies in different contexts. For example,
changes in development, changes in the complexity of the task, and even changes in temperament
may influence which algorithm is selected. For example, in ongoing work, we are looking at whether
causal inferences are affected by the learner’s current temperament. That is, we put a learner in positive
or negative mood, perform the mini-microgenetic method, and compare responses to various algo-
rithms to see whether the best fitting algorithm changes with induced mood. Explaining why and
understanding how these different factors influence algorithms remains a challenge for future work.
10. Conclusions

We have demonstrated that a probabilistic version of the WSLS stratagem can be used to construct
an algorithm that approximates Bayesian inference. It provides a way to perform sequential Bayesian
inference while maintaining only a single hypothesis at a time and leads to an efficient approximation
scheme that might be useful in computer science and statistics. We have also shown that a WSLS algo-
rithm seems to capture adult and child judgments in two simple causal learning tasks. Our results add
to the growing literature suggesting that even responses by an individual that may appear non-opti-
mal may in fact represent an approximation to a rational process.
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